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Interactive Proofs for Polynomial Space

We proved an upper bound on the power of IPs: TP < PSPACE .

1
languo. decidable . i

Today we prove that this upper bound is tight: Qns‘ooléﬁmia?cs;xcee ’
theorem: PSPACE < IP
We follow a similar approach as before:

last Hime Todoxy
O complete Problem UNSAT/#SAT TQBF
@ oarithmetization reduce to reduce to

sumcheck. problem Prodvc+oh¢ck problem
@ protocol for algebraic problem sumeheek. protocol Shamir - protocol

The theorem was proved by Adi Shamir. We study a variant of the proof by Alexander Shen.

IP = PSPACE IP = PSPACE: Simplified Proof

ADI SHAMIR A. SHEN

The Weizmann Institute of Science, Relovot, Israel Academy of Sciences, Moscow, Russia, CIS




Quantified Boolean Formulas [1/2]

A~ folly quantified boolean formulo is o logical expression = such as

)VIX\ 3)(1 3)(3 (X\ /\)('L>VX3
— — - \ —— __/
every variable ig boolaan formula
qvah’ri%ed via ¥ or 3

The expression evalvafes to TRVE or FALSE.

The above example is TRuE: Xa 1 % |

y —e .(OAI)V|=|
X\ |4 | . (II\I)V|=|
X X3

Here is another example: ¥x, A% ¥xa (X aX) vXy .

This one evolvates 1o FALSE: (oab)vo=o0

X, b % 2

(oab) v I =
(|A|)VO = |

(GAadvI =1




Quantified Boolean Formulas

Fully quanﬁ{-‘ied boolean formulas capture familiar classes:

{0 1 3%3xe~ I @l xa)=13 is NP-complete
* { (P , VX|¥XZVXV\ (Pb(\,...,)(n)=l} 1S CON?“COW\P\Q."'Q

In 8Qmm\ , the quo\m‘%‘?ier s alternate :

def - TQBF={ CP(X\,.../)(.\)I ¥ X 3%, ¥X5 CP(XI,...,Xn)‘I}

We  vse the Followina fact (more on this lafer )

TQARBRF is PSPACE-Complefe.

For convenience we henceforth assume that @ is a 3WVF formula .

[2/2]



Arithmetization for TQBF

We wish fo arithmetize an expression sich as ¥ x 3% ¥xs - @(xi,..,xn).
We arithmetize the {formula anp +he quantifiers:

® formula: we use the arithmetization used for #SAT where
Q (X1, %) > p(x,..,xn) st \)’{w}n =0 A deﬁm(P)S"P' X lplslo].

@ Vv Dbehaves like o con\')unm‘nbn ¥ @)= 9,0 )00,
So we define an operator for this: T P(..-,X:,...) = pl.0.): p(.1,..)
X

® 3 behaves like a disjunction: axi @f.x,.)= ¢(.,0.)vel.).) .
So we deline an operator for this: Ll P (i) 1= l-—(l—lo(...,o,...))°(I—-P(...,l,...))

\

In sum we obtain: || T P(’(l,...,)(v\).
X3

X\ X

Since PI{o,.} =9 and T, stay within {01}

71 - p(n,...,xn) equals VX 3% ¥xa- ox,.,Xn) over every {ield .
X3

X X



Towards a Protocol [1/3]
We want an TP +p check +he valve of T 1l _E— p(X, ..., xn) .
3

X\ X

Toea: toke inspiration from the Sumcheck protocol.

View +he sum as n  operators : 2 Plod,.,on) = 2. 2= 2 P(o(.,...,cx,,),

s, ..., oy €101y o Kz . Kn

The sumcheck protocol has n rounds, and each "Peels off" one operator .

By analogy we could consider o protocol that starts os follows:

Fl (Xn) = .l_I_ Tl- P (X‘/"’/)(n) P' € ﬂ:[X]\ Tr FI(XI = |

X2 X3 7R

< wleF Iﬂh(-?

pIX) = _E- ploxy ) PEFL b 00T i)
3

ewJ-LeH: WL("“:

yi u”eF Wne“:

~

plu,.., wa) ?= Pr ()

ProrLem: ¥ielnl, F-,()() moy have degree 2™.3m, which is exponentially large



Towards a Protocol [2/3]

OgservaTion :  boolean valves are unoffected by deﬁl’&s >0 (0%=0 £ =1 ¥k»>0).

For QXO\W\PR., Xf‘ X3 -l-ng. X;’ +X2 and  XiX3+XoXs + Xy agreR  on {O,l}".
Ioea: set all positive powers to 4.

This |eads to the technique of Degree REDUCTION °
e ¥icInl, define the new operator

y‘ = “ replace each occurrence of X5 with X, for k>0 .
e YSC Z to reduce the c\Qﬁ\'QQ o¥ Xi Yo <.

ExAMPLE - Y(x?xg+x,‘_x§'+xz)= X1 Xy t XL X + %5 YYV---Z(x?x3+xix§'+x2)= X X3 + ¥ Xs + X4 ,
\ ' X2

X\ X

Here is an expression Without degree b\owups Hat Qquq\g T 1 ']);I’ P(X'/"v’(") :
3

v Xi Xz X1 X, X3 Xv Xo X3 n Xn Xv Xz Xn
— — — — ~— —
reduce degree of each sutviving varioble to <|  reduce degree of each voriable to <

right: after degree doubling due”to. T or AL Fight after arithmetizing ¢ to p



Towards a Protocol [3/3]
MYy ULvVvymTVvVVvy - /T vv.v P(Xl,...,)(,\)

X\ )(\ XZ. Xl )(z X3 X\ XL )(g n X" X X2 X’\

Q: How to “peel off" +he operator ¥ ?

The operater ¥ oppears after (to the right of) T /L

X. Xi

HQnCQ wbo.n we Feach 1% H)e claim hos this f'orm:

X;
-X| : J, 1
xi := W; (Z g"ﬂ OK P(x'/"vx:z) = K‘iq 'FO\' some S e{l,...,n} .
- xS:- CIJS o P\.\(x"."IXS)
X| =W 6 2 X| =W s
ExAMPLE : Xz =Wy (V )(,X,_{-X,_X;) = | Xa:=W, (X| X:.'I'X:.Xg) = m,‘wﬂwzw; =¥
X; 23‘1\‘3 x’. X; :Swg
—~ X| = W c 2 5
The prover sends P\-‘()(z_) ~ The honest prover sends p():= | X G ( : XDXG+XXs) = WEXaHXy Wy |
x; = “3
X; is free operafor removed

The verifier checks that XV P:-‘(Ya.) evaluated of =W, equals ¥,

The verifier sends w, < [F,

. X| =W . | ~
The new expression is [xz =) ] ( Xi X3+ Xz?‘s) and claimed valve is = Pi(i:),
X; = ‘p);

Tntuition: the new claim is fantomount to pi(w:)= p(w:).



Shamir’s Protocol
Statement: TV L VYV T VVY - lI/T VY-V P(Xu,...,x,\)—?_-h’o

v Xi X2 X1 ¥, X3 Xu Xz X3 n Xn Xv X Xn
n o 2 :
There are K=n+ 24, 1= 1" +9:?V\ operators. we Pee_\ off one at o time.

tor Jelk), lt £, eln] be t+he varioble of +he j-th operator O;.

For 1=\,..,K In round | of the protocol; ,
\\ y d * I‘F O\‘ X +hQY\
OO p = Y when (Xi=0i )i q, HOROER'S
Py e Flx] - ‘if O,= 4%, then

,  ChecK py vs ¥y,

2

- (1- B‘°’) (=pin) = ¥,

(/J,Lle H'-

LJ,L:‘ —F
S,) = §J_‘ vi Xi‘.‘::: walj‘}
XJ = E(WL.;)

/N

if O~=¥| then
( FJ)(N"M) ¥

OO P : ¥y, when { Xi=0; by replaces old valye of X if one exists
After K rounds the verifier checks that P(w‘,...,wn)?ﬁXK,



Analysis of Shamir’s Protocol [1/3]

Consider o round jelkl where O5=T for 4 Inl. (The cose 0;=4 js similar )
4

COMPLETENESS : Suppose that {X"?“' KT’- O.., P) = 4.,

xa‘.;-l = 0% 4

The honest prover sends py(x;) := [x"?“" l(Ojﬂ"' F) of degree sl,

x.i.;,-l = W,«'ﬁ-i

The veritier's checK passes; p, (0)-p; (1) = &, . Mdn s
J |
The next statement is always trye: ‘v‘w,,se F LZ]' %‘ OJ,,,'“ ]>) = Ps(‘*’is)= ¥,

SounpNESS: S\)Ppose. Hat [X' ‘(ﬂ: Ojﬂ F)’L J

4.| wAa"

The wmalicious prover sends P\"\(XL;) of degree 14,

If B = p (+he honest polynomial) then the verifier's check fails: (0)- (1) = pjl0)-pi(1) # ¥,
So suppose thal ]5: 3 P\;.

By delinition of P, ‘ oo ‘(OJ,,, 'F)-—-Ps(wﬁ-i).

By definition of ¥, ¥ XLJR,(“&J)

Hence the output claim [g i %‘(Om.. )Z._-xd IS Pj(wki)iﬁ(wg),

This last equal\+y holds W.p. <=  owr the choice of 0, € .

10



Analysis of Shamir’s Protocol 7vuvrnyse ey g me [2/3]

Consider o round jeLk]l where OJ=§Z;3 for 4 Inl.

CoMPLETENESS:  Svppose that Y)iw \(VO P) ¥ for some s

4

Xs:= 0
X,
The hOf\QST Pl’OVQ\' SQV\dS PJ(X|.]) = {;((s( w\s)‘(OJ“". F) 0‘? dearee L 3m st redvctions) OF €2 (other reductions) ,
The verifier's check passes; ( F)(w‘.:“) th wt
X|'- \[«
The next statement is always +rue. ’v‘w,_se FF, [))(:"wﬁ \(Om . )= \’_;\.)((,g,;.l)= %

SounpNESS: S\;Ppoge. Hiot r‘_. ‘(VO F)# i for some $2 )

Xs CIJS

ThQ W\O\IC\OUS PI‘OVCI’ SQl\dS 'P\:\(X') 0‘9 dQﬁl’ee S 3”\ (first reductions) OY sZ (other redvd'ionS).

If B = p (+he bonest polynomial) then the verifier's check fails: (¥ 7 %)) = ( p) i) # %o,

So suppose that p; # P\,

By delinition of P, {,,, 3 \(O:‘,,| f)=P3(wA-5).

By definition of ¥, K,—R,(w&)

Hence the output claim {x oy ‘(Ow );XJ s pyl -)Z;.ﬁ(olg;‘).
<

xs
g 3m £ over the choice of 0y e F.

This last equality holds w.p. < O S

11



Analysis of Shamir’s Protocol [3/3]

OveraL. COMPLETENESS -

In eodn round, i the corrent claim js trve then the next claim is frye wp. 4.

After the last round, the final cheek ( plwy,..,wa) £ ¥k) passes.

OveraL SoUNDNESS

The soundness error is aF wmost +he sum of the round errors:

MYV ULVVTIVY LT VYT plyex) =

X\ )(\ )(7_ )(l )(z X3 X\ XL )(g n X" X XL X'\
— Y O Y ~ —— Y—"
) 2 2 | 2 | 3m

each — £ each eoch
HRGERERGAEE TR

- n L +pn.3m L (p-)h 2 3mntn
IF| || z IFI IF|

Hance  Shamir's protocol is Sound for  sufficiently large .

12



Shamir’s Protocol for a Simple Example

Evalvate: T VT x'+X, = TV xtexi =T 2x,=0. Hence ¥.:=0.
xl ><\ XJ. Xl X| Xy

Protocol execution:

TVT @ex, =%,

X, X "z
YT araczn P9 pp0) Iy, © Gl o
P Y P
& o O« H:
X\ = Pl(a) =2-a
[Xl_’a](y‘l;,; X?'+X,_) :’- X\
?
p=T X2+%, = XPx; P.0) > (Z p)o)2¥i & ara=2a
< b b« T
g, := A (b) = b*+b
[Xl-’b](]).(,; Xf"l'xz);xz

2 ,.2 ? 2
Py o= b1 (X3 3) = by, L308) 5 o) 2% o b-(be1) 5 b+b v

< ceT .
st.-_ Ps(C)::k'I'C

2
final check: [xi=b, %] (x*+%,)2 % o Bc= bie v/

13



On Shamir’s Original Proof

The TP for TQBF that we saw is dve to Alexander Shen.
Adi Shamir's original proof that TP=PSPACE relies on simple QBfs,

nﬂj\fk Prz\’ix

Let & beq quanfi{:icd boolean formvla where ¥/3 quantifiers may appear anywhere .
We say that @ is simple if Vieln] every occurrence of X; is seporated from

its quantitication point by <1 yniversal qvcm’rh”ier (R oany number of other symbols).

Example s o ¥x ¥xa 3%, ((xivx2)a VX, (XzAstXL,)) < Simple

o ¥xi ¥x, ((XaXeYAYX; (KiaX3z)) < NoT Simple
Define TSABF =={ @‘ ® is o fully quantified boolean formula +hat is Simple and evalvates to frue }

lemma:  J efficient f st ¥& Qe TQBF ‘_’f(Q)GTSQBF .

(The tough idea is to introdute o new variable for each octurrence of ¢ach variable.)

ThQ Q\'iH\MQ'l'iZ'Q"'iOn F of a SimP\Q QRF § is st dQ%ﬁ(P)& O(li,) (No. need for degree rqduc’rion.)
An IP for TSQBF is then straightforward.

14



Additional Slides:
TQBF is PSPACE-complete

15



TQBF is in PSPACE

Let § = QX QuXe - QuXn P (xy- %) be o (fully) quomTiFie,d boolean formvla,
Here each Qie{¥,3}. Also: m=size of boolean formola @ , n=# variables .

GoaL: evalvate & in poly(mn) spoce

Define: { &,.=&
1 ¥ie{n,n—2,..,0} , @i(xi,---,xn-'\)* Qi Xneitr = Qn X CP(X\,---/ Xn-i Xneiar, e, Xn)
Observe : + @, (x,..,xn)= (P()(\,...,Xr\)
- recurrence: @n= QX B (), B, ()= Guxa B, (%), ... .

This yields o full binary tree on 2" |eaves that we can evalvate in poly (m,n) space.

ExXAMPLE FOR n=3:

®,-

/ \

®,,(0) ®,.,(1)
e

AN

B, @ ,(01) ®,,(10) @, ,(11)

00)
/o \ /\ /" \ /\
®,(000) & (o01) (010 § (011) D000 I _(101) (110 D _(111)

16



TQBF is PSPACE-Hard [1/2]

Suppose thet a lansuog{ L is decidable by o machine M running in space  S(n)= poly (n).

GoAL: given X of size n, construct GBF @ in time Foly(n) st &= itf xel

(and hence of size poly(n))

Define G=G(Mx) to be the conQiﬁura’rion 3\—oph of +he computation of M on x:
G=(V,E) where V={C:(C isa possible stofe of M)V |Vl= ZO(S)
E={(C.,Cz.): M(x) in state C, transitions to Ca in 4 S‘l'ep}

There is o unique initial state Cui+ ond o w\iqve acce,ph'ng state Cm.
Ogservation : xeL <> 3 path in G from Ciw Yo Cocc
We. recursivc.\y define , for i=0,1,2,.., o QBF ®; st

V¥ C¢,GeeV B (C,G)=l < F path in § from G b G of length <2
The QBF that we seek is @:= O (G, Cac) .

We are left+ to show that we can constroct @; in time poly (n,i).

(and hence of size poly(n,i))

17



TQBF is PSPACE-Hard [2/2]

We want to constroct @i st ©.(C,C.)=1 < 7 path I C, Qrom G h G of )engH» <2

Base Case: i=o

®, (C1,C,) := “+he boolean formvla Cwith no quantifiers) obtained by applying
the Cook-Levin theorem to the +ransition function of Mx)"

Recursive Case: >0 consider a state half-way

@i (Cl/CL) = Cz @i-\ (C\,Ca) A §i-l (C?MC’-)

The QBF @; computes the correct boolean function.

ProLEM: | ;]2 218,12 2 , so This construction is inefficient
((Also, $; has only existential quantifiers so we do not expect to captore PSPACE.)

SoLuTion: use extra quantifiers fo include &, only OncE

@i (Cl,cz) g 3 C3 V D\,Dz ((D\"—’ C| N D)_"" CB) \Yj ( Dl:’ Cg A D1= C;_)) > @.l-l (D‘,DL)

syntactic sugar: @,»¢, stands for P,ve,
Now |&] =131+ poly(S) = poly(S,1) = poly (n,i). (Since S(n=poly(n).)

18
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